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Molecular anions that possess excess internal vibrational and/or rotational energy can eject their “extra” electron
through a radiationless transition event involving non-Be@ppenheimer coupling. In such processes, there

is an interplay between the nuclear motions (i.e., vibrations and rotations) and the electronic motions that
allows energy to be transferred from the former to the latter and that permits momentum and/or angular
momentum to also be transferred in a manner that preserves total energy, momentum, and angular momentum.
There are well-established quantum mechanical expressions for the state-to-state rates of this kind of
radiationless process, and these expressions have been used successfully to compute electron ejection rates.
In this paper, we recast the quantum rate equations by making use of approximations that have proven useful
in rewriting the quantum expressions for rates of photon absorption in a more classical manner. In so doing,
our goal has been to produce rate expressions that allow one to understand, in a more nearly classical manner,
the energy-transfer process and to more readily predict when such rates will be significant.

I. Introduction rotation-to-electronic coupling can be dominiant in causing
) ) ) ) electron ejection for high rotational levels.
A. Relation to Experiments. Numerous series of beautiful 3. Enolate anior€ that have been “heated” by infrared

specroscopy experiments have been carried out over a numbep, jsiple photon absorption for which torsional motion about
of years in the Linebergér,Braumar; and Beauchan® o H.C—C bond, which destabilizes the orbital containing
laboratories in which electronically stable negative molecular hq exira electron, is the mode contributing most to vibration-
ions prepared in excited vibrationalotational states are g _alectronic energy transfer and thus to ejection.

observed to eject their “extra” electron. For the anions

considered in those experiments, It is unlikely that the anion ypat are seen in the experimentally observed rates of electron
and neutral-molecule potential energy surfaces undergo Cross'ng%jection. However, in our opinion, a clear physical picture of

at geqmetiles I?qcet?]sedfby tge;r V|bdrattr|]ort1atlhmot|ons n thes?the energy, momentum, and angular momentum balancing
elxp(irlmer? S.t' IS fre orle gt;evtg tat' et m?c tamgm O events that accompany such non-BO processes (i.e., the extra
electron gjection must involve vibratismotation 1o €lectronic electron must gain energy and change its momentum/angular
energy transfer in which couplings between nuclear motions momentum in a manner opposite to the nuclear motion’s loss

and e.Iectronlc motions known. asn-Born—Oppenhelme(BO) of energy and change in momentum/angular momentum) has
couplingscause the electron ejectioather than cupe crossings been lacking

in which the anion’s energy surface intersects that of the neutral It is the purpose of this paper to enhance our understanding

at somg geometries. ) ] ) of these events by recasting the rate equations in ways that are
Certainly, there exist many cases for which the anion and |ess quantum-state specific but that focus on the movements of
neutral electronic energy curves (surfaces, more generally)he nuclei in a nearly classical manner. This is done by

intersegt. In such cases, the rates .of ellectron ejection are often starting with the rigorous state-to-state quantum expression
determined by how frequently the vibrational motion moves the ¢, 101 BO transition rate®o

anion into geometries where its energy lies above the neutral’s 2

energy (because the rate on electron loss once such a geometry.

is reached is often ca. 38-10' s71). This class of electron

ejection isnotthe subject of the present paper; only those anions

for which vibration-rotation to electronienergy transfeiis

the rate-determining event are considered here. . .
electronic motions.

In earlier works} we and others have formulated and By so doing, we are able to arrive at expressions, which we
computed non-BO coupling strengths for several of the anion o1y semiguantumfor rates of electron ejection that, in our

systems that have been studied experimentally including the oninion offer better physical insight into these radiationless
following: processes and thus offer the potential for predicting when such
1. Dipole-bound anior¥3#'in which the extra electron is  rates will be significant in other systems. It should be
attracted primarily by the dipole force field of the polar molecule emphasized that it isot our intent to produce rate equations
and for which rotation-to-electronic coupling is most important - that will allow more accurate calculations of these electronically
in inducing electron ejection. nonadiabatic rates. For computing these rates, there is nothing
2. NH- (X2II) for which*d vibration of the N-H bond wrong with the fully quantum rate expressions that form the
couples only weakly to the nonbonding,apbital and for which starting point of our treatment. Our approximations to these
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Our calculations have been successful in interpreting trends

including what is known from past experiefiedout the
Phagnitudes and geometry dependencies of the electronic non-
BO matrix elements arising in these rate expressions, to

3. make the simplest reasonable approximation to the nuclear
motior’ (i.e., vibration-rotation) and its coupling to the
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rate expressions, instead, provide expressions that are morelectronic state labeleklare found by solving the vibratien
readily understood and interpreted than the fully quantum rotation Schidinger equation

equations.

B. State-to-State Quantum Rate Expression.Within the
Born—Oppenheimer approximation, the electronic Sdimger
equation

h(r1Q) ¥(rIQ) = E(Q) %«(rIQ) 1)

is solved to obtain electronic wave functiogg(r|Q), which
are functions of the molecule’s electronic coordinates (col-
lectively denoted) and atomic coordinates (denot€y, and
the corresponding electronic energigQ), which are functions

of the Q coordinates. The electronic Hamiltonian

h(r1Q) = S {—hI2mVi? + 1, €y — 5 Z, &M, +

=
gl 2 ZaZbezl Rapt (2)

a=

{T+ E(Q}x(Q = €1 (Q) (8b)
There are a complete set of functions@fi.e., the{yx.} for
eachelectronic statek.

In the theory of radiationless transitions as covered in this
paperé49the two non-BO terms are treated as perturbations (not
externally applied, but arising as imperfections within this model
of molecular structure) that can induce transitions between
unperturbed states each of which is taken to be a specificBorn
Oppenheimer product state:

Wy (r, Q) = 9 (rQ (Q) 9)

It is reasonably well-established that the non-BO coupling term
involving second derivatives of the electronic wave function
contributes less to the coupling than do the termigiy/oRs)-
(—ihay/dR)/my having first derivatives of the electronic and

contains, respectively, the sum of the kinetic energies of the vibration—rotation functions. Hence, it is only the latter terms

electrons, the electrerelectron repulsion, the electremuclear
Coulomb attraction, and the nuclearuclear repulsion energy.

Given the solutions to the electronic Stimmger equation,
the solutions of the full Schidinger equation (i.e., the equation
in which all nuclei and electrons are moving)

H(r|Q) W(r, Q) = E¥(r, Q) ®)

that will be discussed further in this paper.

With this background, the rate (s71) of transition from a
Born—Oppenheimer initial stat®; = yiy; to a final stateW;
= yrxs IS given, via first-order perturbation theory, as

R= (Zﬂ/h)fIDhI (33| Plap[QPIu) (e + E — €) P(E)(fg)

are expressed as sums over the (complete set of functions ofyere ¢ ; are the vibratiorrrotation energies of the initial (anion)

the electronic coordinata3 electronic functiong yi(r|Q)}

W(r, Q= Zwk(”Q) Q) (4)

with the y(Q) carrying the remainin@) dependence. When
substituted into the full Schidinger

(H- E)Zwk(”Q) Q) =0 (5)

then using the fact that the full Hamiltoniat is he plus the
kinetic energy operator for nuclear motidn

H=h+T=h+ Y (-h¥2my2 (6)
a

premultiplying the above Schdinger equation byy, and

and final (neutral) states, arid denotes the kinetic energy
carried away by the ejected electron (e.g., the initial state
corresponds to an anion and the final state to a neutral molecule
plus an ejected electron). The dengitgf translational energy
states of the ejected electron is related to the kinetic energy by
o(E) = 4nmeL3(2meBY4h2 Here and elsewhere, we use the
short-hand notation involvin@yPy/u to symbolize the action

of the multidimensional derivative operators arising in the non-
BO couplings

(Pye)(Pluye) = Z(_ih31Pf/8Ra)(_ihaXf/aRa)/ma (11)

whereR;, runs over the Cartesian coordinat&s, (Ya, Za) of the
ath atom whose mass i®,.

C. The Electronic Non-BO Matrix Elements. The inte-
grals over the anion and neutral-plus-free-electron electronic

integrating over the electronic coordinates gives the set of states

coupled equations that need to be solved for{thé:

Z S (rIQ)fhe + T — B}y (r1Q) x(Q) dr =
{E(Q — B} %/(Q + Tzo(@Q +
22{ S v (rIQ)(—ikdy JoR)(—ihdy,JoR,)/m, dr +

[ (rIQ(—H2PyJoRA)/2m, dry} =0 (7)

The expression

{E/(Q) — E}x,(Q) + Ty (Q) =0

is the equation governing the nuclear motion functi¢ps -
(Q)} in the absence of the non-Ber®ppenheimer (non-BO)
coupling terms (i.e., the latter two terms in eq 7). Within this
model, the vibratiofrrotation functiong y(Q)} of each specific

(8a)

m ¢ = | Ply;U

are known to be large in magnitude only under special
circumstances:

1. The orbital of the anion from which an electron is ejected
to form the statep; of the neutral (usually the anion’s highest
occupied molecular orbital (HOMO)) mubt strongly modu-
lated or affected by movement of the molecule in one or more
directions Q). That is,dyi/dQ, which appears ifPy;, must be
significant or the above integral will be small.

2. The state-to-state energy gap— ¢, which is equal to
the energyE of the ejected electron, must not be too large;
otherwise, the oscillations in the ejected electron’s wave function
wr will be so rapid as to render overlap withy;/0Q negligible
again, making the above integral small.

Moreover, symmetry can causa: = [¢|P|y;0to vanish.

In particular, if the direct products of the symmetryyfand

(12)
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d¥/do = (P(6+3) - ¥(0))/8
; causes 2py to acquire 2p,
character

d¥/dR = (P(R+S) - P(R))/S
causes 2py to acquire d characte

Figure 1. Orbital response of NHs 2p, orbital to (a) vibration of
the N—H bond (left) and (b) rotation of the NH bond (right).

of 9/0Q do not match that ofys, thenm¢ will vanish (i.e., if
direct product of the HOMO’s symmetry and the symmetry of
the vibration or rotation motion from which energy is transferred
determines the symmetry of the ejected electron’s continuum
orbital).

Let us consider these conditions in more detail before
proceeding further because they form the basis for approxima-

tions that are introduced later and that are important componentsh

in our treatment. The derivatives (i.e., the dynamic responses)
of the anion’s orbitals to nuclear motiordgi/0Q arise from
two sources:

1. The orbital’'s LCAG-MO coefficients depend on the
positions of the atoms (or, equivalently, on the anion’s bond
lengths and internal angles). For example,#fi@rbital of an
olefin anion that contains the “extra” electron is affected by
stretching or twisting the €C bond involving this orbital
because the LCAGMO coefficients depend on the bond length
and twist angle. As the bond stretches or twists stherbital’'s
LCAO—MO coefficients vary, as a result of which the orbital’s
energy, radial extent, and other properties also vary.

2. The atomic orbitals (AO) themselves dynamically respond
to the motions of the atomic centers. For example, vibration
of the X?TT NH~ anion’s N-H bond induces gcharacter into
the 2p, orbital containing the extra electron as shown in Figure
1. Alternatively, rotation of this anion’s NH bond axis causes
the 2p, HOMO to acquire some 2pcharacter (see Figure 1
again). Such AO responses can be evaluated using the sam
analytical derivative methods that have made computation of
potential energy gradients and Hessians powerful tools in
quantum chemistry.

Another view of how the LCAG-MO coefficients vary with
geometry can be achieved by differentiatimgy; = Ejy; with
respect toQ (an arbitrary molecular motion), premultiplying
by the anion-plus-free-electron functign, and integrating over
the electronic coordinates r to obtain

[@loh/IQIpiINE, — B — B) = [§|9/0QyF  (13)
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Figure 2. Anion (lower) and neutral (upper) potential energy surfaces
illustrative of NH- where the surface spacing does not vary strongly
alongR.

0Q|¢iCwill be small because the continuum orbitalwill be
ighly oscillatory and thus will not overlap well witldlie/0Q)¢:.

In summary, for non-BO coupling to be significanthe
anion’'s HOMO must be strongly modulatdsy a motion
(vibration or rotation) of the molecule’s nuclear framework and
the state-to-state energy gap must not be too lagé& render
the HOMO-to-continuum-orbital overlap insignificant. For the
HOMO to be strongly modulated, it is helpfultiie anion and
neutral energy surfaces approach closétyb., this is not the
same as requiring that the state-to-state energyegape; be
small) at some accessible geometries.

It should be emphasized that it is necessary but not suffficient
for Ex(Q) — Ei(Q) to be small over an appreciable range of
geometries; this only guarantees that the denominator in eq 13
is small. It is also necessary thB{Q) — Ei(Q) decrease at a
significant rate as the point of closest approach is reached; this
is why we say the surfaces muspproach closely. Viewed
another way, ifE«(Q) — Ei(Q) were small yet unvarying over
some range of geometrie®), then the HOMO's electron
binding energy (and thus radial extent) would remain unchanged
over this range of geometries. In such a case, movement along

PQ would not modulatethe HOMO, and thusiyi/0Q would

vanish. Let us consider a few examples to further illustrate.
D. A Few Examples. In Figure 2 are depicted anion and
neutral potential curves that are qualitatively illustrative®6¢
the X1 NH~ case mentioned earlier. In this anion, the HOMO
is a nonbonding 2porbital localized almost entirely on the N
atom. As such, its LCAGMO coefficients are not strongly
affected by vibration of the NH bond (because it is a
nonbonding orbital). Moreover, the anion and neutral surfaces
have nearly identicaRe. and we values, and similabe values,
as a result of which these two surfaces are nearly parallel to
one another over a wide range of internuclear distances and are

In this form, one sees that the response of the anion’s electronicseparated by ca. 0.4 eV or more than 3000 tat their minima.
state, when projected against the neutral-plus-free-electron statdt has been seen experimentally that excitation of Nbl the

to which it will decay, will be enhanced at geometries where

low rotational states of the = 1 vibrational level (which lies

the anion and neutral potential surfaces approach closely (soabover = 0 NH of the neutral and thus has enough energy to

the denominator in eq 13 is small). Enhancement is also
effected when the initial and final states have a strong matrix
element of the “force operatoths/0Q. The latter is effectively

a one-electron operator involving derivatives of the electron
nuclear Coulomb attraction potentigly 2Z.€/ri a, SO the matrix
element|ohd0Q|yican be visualized dg|ohd/dQ| il where

¢i is the anion’s HOMO and is the continuum orbital of the
ejected electron. At geometries where the aripeutral energy

eject the electron) results in very slow (e.g., c& €0) electron
ejection, corresponding to ca. 1 million vibrational periods
before detachment occurs. However, excitation to high rota-
tional levels (e.g.J = 40) of v = 1 produces much more rapid
electron ejection (ca. 2610 s™1). These data have been
interpreted as saying that vibrational coupling is weak (@

dR is small) because of the nonbonding nature of thgVED,
while rotational coupling becomes significant (i.8yi/90 is

surfaces are far removed, the denominator in eq 13 will attenuatelarge) for highJ.

the coupling. If the state-to-state energy differeace ¢ =
E accompaning the electron ejection is large, the intégktihe/

In Figure 3 are shown anion and neutral potential curves, as
functions of the “twist” angle of the $C—C bond in a typical
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18000 Here,yi; andy;s are the initial and final state electronic and
16000 3 — 9 vibration—rotation state wave functions, respectively, and
] —~ Z2lg are the respective state energies, which are connected via a
140004} T ~ — /; photon of energyiw. For a particular electronic transition (i.e.,
12000 \ P o / a specific choice foty; andyr and for a specific choice afitial
o 10000_5 \\ // vibration—rotation state), it i;lpossible to (_)btain an expre;sion
= 8000 ] for the total rate Ry of transitions from this particular initial
w 3 \ / state into all vibratior-rotation states of the final electronic
6000 \ / state. This is done by using the Fourier representation of the
4000 Dirac ¢ function
2000 !
] tj (e — & — ho) = (L/27h) [explit(e; — & — hw)/h] dt
Y T T T 171 T 1T T T T T T 1T

"Theta in Degrees (15)

Figure 3. Anion (lower) and neutral (upper) potential energy surfaces . A . . . .
illustrative of enolate cases where the surface spacing varies stronglyand summing over the indices labelling the final vibration
along the HC—C torsion angled and becomes very small ne@r= rotation stategs
90°.

R; = (2n/h) Y (1/27h) [ explit(e; — ¢ — Aw)lh] x
enolate anioh* such as acetaldehyde enolateCEHO . T f b
Angles neaf = 0 correspond to geometries where thepital iV IV A dt (16
of the H,C moiety is delocalized over the twg prbitals of the PNV v (16)

neighboring C and O atoms, thus forming a delocalized  Next, one introduces the electronic transition matrix element
HOMO. At angles neap = 90°, the p; orbital of the HC (which may be the electric dipole matrix element, but need not

group is no longer stabilizated by delocalization, so the HOMO's e 5o restricted for the delelopment presented here)
energy is much higher (as a result of which the arinautral

surfacesapproach closely). In this case, excitation of, for i = | V|p,0 a7
exampley = 7 in the HC—C torsional mode of the anion might '
be expected to produce electron ejection becauser of the and uses the facts that tiig: are eigenfuncions of the electronic

anion lies above = 0 of the neutral. However, over the range Hamiltonian he and that they; are eigenfuntions of the
of 0 values accessible to both the= 7 vibrational function of respective vibratiortrotation Hamiltonial + V;+(Q) belonging
the anion and the = 0 function of the neutral, the anien to the two electronic states having potential eneryje®) and
neutral energy-surface gap is quite large (E(Q) — Ei(Q) is vibration—rotation kinetic energil (both of which are functions
large even thoughk — ¢ is small). In contrast, excitation of of the molecule’s atomic position coordinates collectively
= 9 of the anion could produce more rapid electron ejection denotedQ)
(to v = 2 of the neutral, but not to = 0 of the neutral) because
for the v = 9 — v = 2 transition there are angles accessed by  hgy;; = Vi((Qw;y and [T+ Vi((Q)lxis = €exir  (18)
both » = 9 anion andv = 2 neutral vibrational functions for
which E(Q) — E(Q) is small and changing; moreover, the state- These identities then alloRy to be rewritten as
to-state gag; — ¢ is also small in this case.

The purpose of these examples and of considering the naturd®r =
of_ t_he electror_uc non-BO matrix element was to prepare for (h/h)Z(l/Znh)fexp[—itw] | exp(ithy /), * [y Ox
critical approximations that are to be introduced. In particular

1. we will focus on transitions for whicl; — ¢ is small;

2. we will focus on molecular deformations that most e XPNIR) ey N (19)
strongly modulatethe anion’'sHOMO, so

3. we will focus on geometrie® near whichthe anion-
neutral surface spacing is small and changing ZUGDEM =1 (20)

In this form, the completeness of thg:}

Il. Time Correlation Function Expression for Rates

can be used to eliminate the sum over the vibratimiation
states belonging to the final electronic state and thus express
Ry in the following manner:

Before dealing further with the non-Bort©Oppenheimer case,
it is useful to recall how one can cast other rate expressions,
such as the rate of photon absorptioaccompanying an
electronic transition in a molecule, in terms of a Fourier
transform of a time-dependent function that involves dynamical Ry = (27/h)(1/27h) [‘exp[-itw] @xp(th/A)y|u; *

motions on the initial and final electronic states’ potential energy exp(thy/h) u |y 0ot (21)
surfaces. A
A. The Optical Spectroscopy Case.1. From Wentzet The above expression is often visualized (and compBitrd)

Fermi Golden Rule to the Time Domaifthe expression for  terms ofthe Fourier transform of the erlap of two time-
the rateR (s™%) of photpn absorption due to couplingbetween propagated wae fuctions

a molecule’s electronic and nuclear charges and an electromag-  (3) One functiorF; is equal to the initial vibratiorrotation
netic field is given through first order in perturbation theory by fynction |, Cupon which the electronic transition perturbation
the well-known WentzetFermi “golden rule: formuld:® it acts, after which the resultant product function is propagated

for a timet on thefinal-state’s potential energy surface by using
R = (27/h)| @ Vv 0Fo(e — ¢ —ho)  (14) the propagator exjiti/h).
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(b) The second functioR, is equal to the initial vibratior
rotation function|y;] which is propagated for time on the
initial -state’s potential energy surface using the propagator exp-
(ithi/h) (which, of course simpy produces ekp{h) x [xiD,
after which the electronic transition perturbatjan is allowed
to act.

The overlagl,|F;0s then Fourier transformed at the energy
hw of the photon to obtain the rai of absorption of photons
of frequencyw.

Before returning to the non-BO rate expression, it is important
to note that, in this electronietransition spectroscopy case, the
perturbation (i.e., the photon’s electromagnetic potential) appears
explicitly only in the electronig ¢ matrix element because this
external field is purely an electronic operator. In contrast, in
the non-BO case, the perturbation involvespeoduct of
momentum operatorene acting on the electronic wave function
(Py;) the secondRy;i/u) acting on the vibration/rotation wave

J. Phys. Chem. A, Vol. 102, No. 29, 1998039
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Figure 4. Anion (lowest) and neutral (second lowest at lafge
potential energy surfaces arising in the photon absorption case. The

curve that is highest in energy at larBds the anion surface that has
been shifted upward in energy by the photon’s endrgy(which has

function because the non-BO perturbation involves an explicit heen chosen to make equal toe; plus the photon's energy).
exchange of energy and momentum between the electrons and

the nuclei rather than an absorption of energy and momentum
from a photon. As a result, one has matrix elements of the
form k| @i |P|ywi{P/u)y:Cin the non-BO case whereas one finds
O @i Vs s Cin the spectroscopy case. A primary difference
is that derivatives of the vibration/rotation functions appear in
the former case (inR/u)y) while only y appears in the latter.

2. The Semiclassical Approximation tor.RThe most
classical (and hence, least quantum) approximat®to ignore
the fact that the nuclear-motion kinetic energy operatdoes
not commute with the potentials; and thus to write

exp(th; /h) = exp(tT/h) exp(tV; /h) (22)

Inserting this into the above equation &, and also assuming
that T also commutes with (or thatuir does not depend
significantly on geometrQ), gives

Ry = (27/h)(1/27h) ['expl-itw] G exptVi/h)lu;* x
exp(tVi/h)|u |y Cdt (23)

This treatment amounts to treating the nuclear motions fully
classically while using quantum mechanics for the electronic
motions. Carrying out the Fourier integral over time in eq 23
gives

(L/21h) [explt(V; — V; — ho)H] dt = 6(V; — V, — fiw)
(24)

This 6 function can be used in the expressionfgito constrain
the multidimensional integral over vibratiemotation coordi-
nates (denote®) to those specific values that obey the energy
conservation condition

ho =V(Q) — Vi(Q) (25)

thereby yielding

Ry = (2r/h) il * 0 (Vs — Vi — ho) igli0 - (26)

This semiclassical (quantum electrons and classical nuclear
motions) result can be interpreted as saying Byais given as
the norm of the function sy (consisting of the perturbation
uif acting on the initial vibratiorrrotation state)constrained
to those regions of space that obey the conditien= V;(Q)
— Vi(Q). This condition is equivalent to constraining the
integration to those regions where the change in classical

nuclear-motion kinetic energy in moving from the initial-state
surfaceV; to the final-state surfacé is zero. One can visualize
such geometies as those at which the upper potential energy
surfaceV;(Q) is intersected by the lower surfad&Q) once

the lower surface is shifted to higher energy by an améunt

In Figure 4 is shown such an intersection betweeW:(&)
surface and a lower-stad(Q) surface that has been shifted
upward in energy. In this example, transitions between the
initial level ¢; and the final levek;, whose difference; — ¢, =

hw determines the energy shift, would occurRavalues near
where the two surfaces cross.

B. The Non-Born—Oppenheimer Case. 1. From Went-
zel-Fermi Golden Rule to the Time DomairlLet us now
consider how similar the expression for rates of radiationless
transitions induced by non-BotrOppenheimer couplings can
be made to the expressions given above for photon absorption
rates. We begin with the correspondigy Wentzel-Fermi
“golden rule” expression given in eq 10 for the transition rate
between electronic stategg; and corresponding vibratien
rotation statey;; appropriate to the non-BO case:

R= (2-77/h)f|I—_?&i|@i|P|1/)me/#)Xfu]zé(€f +E—¢)p(E) (dll(E))

We recall thateis are the vibratiorrotation energies of the
molecule in the anion and neutral molecule stakeslenotes

the kinetic energy carried away by the ejected electron, and the
density of translational energy states of the ejected electron is
p(E). Also recall that we use the shorthand notation to
symbolize the multidimensional derivative operators that arise
in non-BO couplings and that embody the momentum exchange
between the vibration/rotation and electronic degrees of freedom

(Pye)(Pluyy) = Z(_iha%/aRa)(_ihaXf/aRa)/ma (11)

whereR, is one of the Cartesian coordinate§,(Ya, Zs) of the
ath atom whose mass is..

In the event that some subde®} of internal vibration or
rotation coordinates has been identified as inducing the radia-
tionless transition,Ryr) (P/uys) would represeng ;(—ifdy/0Q;)-
(—ihayi 0Qy)/(w;), whereu,, is the reduced mass associated with
the coordinateQ;. As indicated in the discussion of Section
I.C, it is usually straightforward to identify which distortional
modes need to be considered by noting which modes most
strongly modulate the anion’s HOMO So, for the remainder
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of this work, we will assume that such active modes have been course, explei/h) yi) after which the perturbatiom +(P/u) is

identified as a result of which the sup(—ihdy/3Q;)(—ihdys/
9Q)/ () will include only these modes. The integration over
all of the other coordinates contained in the matrix elenignt

@i |PJy¢[P/u)y:0in eq 10 can then be carried out (assuming
the electronic elemerii;|P|y:Cto not depend significantly on
these coordinates) to produce an effective Frar@&ndon-like
factor (FC):

i @y [Pl [P/ )y 0

= Hj:inactivqfde Bti,jb(f,j mj:activq/‘deBti,j|Ey)i|P|waX
(P/#)Xf,jD

= FCTT_ycvef AQ G| Pl WP L)y 0 (27)

allowed to act.

The time-dependent overld,|F,0is then Fourier trans-
formed at energ¥ = ¢; — ¢ and multiplied by the density of
stateso(E) appropriate to the electron ejected with kinetic energy
E.

It should be noted that to use the above time-domain formulas
for computingrates, one would need an efficient means of
propagating wave packets on the neutral and anion surfaces that
would be valid for longer times than are needed in the optical
spectroscopy case. Why? Because, in the non-BO situation,
the OF,|F,0 product is multiplied by expEt/i) and then
integrated over time. In the spectroscopy ca$e|F;0is
multiplied by expt-iwt) and integrated over time. In the former
case,E corresponds to a small energy differeriee= ¢; — ¢,
whereashw is equal to the energy of the optical spectroscopic
transition. Hence, short-time propagators give sufficiently

Since, by assumption, the anion and neutral molecule do notaccurate,|FiCfunctions to use in the spectroscopy case, but

differ significantly in their geometries (and vibrational frequen-

cies) along the coordinates contributing to the FC factor

(otherwise, the anionneutral energy gap would depend sub-

longer time propagations will be needed in the non-BO case.
2. The Simplest Semiclassical Approximation Fails in the
Non-BO Case.If one attempts to follow the photon absorption

stantially on these modes), the FC factor is probably close to derivation and make the assumption that the nuclear-motion

unity in magnitude. Hence, for the remainder of this paper,
we will focus only on the active-mode part of this expression

and will do so assuming only one such mode is operative (i.e.,

we treat one active mode at a time).
Introducing the electronic coupling matrix element

m ¢ = [[Ply;0

which plays a role analogous to thgs of photon absorption
theory, and realizing tha& is a Hermitian operator, allows the
non-BO rateR to be rewritten as

(28)

R= (Zﬂ/h)fmplﬂ)?{ﬂm,f* ety ((Plu)y; [0(eg + E —
€) p(E) dE (29)

If the Fourier integral representation of the function is
introduced and the sum over all possible final-state vibration
rotation stategys} is carried out, theotal rate Rr appropriate
to this non-BO case can be expressed as

R, = (Zn/h)z J(W2rh) [explit(e; — € + E)/H] x
Pz ¢ s e my ¢ (Plea) it o(E) dE - (30)

The next step is to replaces (+ E)¥s| by O|(T + Vs + E) and
(€)lxiOby |(T + Vi)yiOand to used|yx:k| = 1, which gives

Ry = (2/h) [ (1/2xh) [ p(E) (Plue) exp(t(T +
V) 711 eXpEt(E + T + Vo)h)m, (Pl (ot dE (31)

In this form, the rate expression looks much like that given for
the photon absorption rate in eq 21 but withy(P/u«) replacing
the molecule-photon transition matrix elemepts. As in the
absorption case, one can view (and even comprteas the
Fourier transform of the oerlap of two time-propagated
functions

(a) The first k is the initial vibration-rotation statey; upon
which the non-BO perturbatiomm +(P/«) acts after which
propagation on the neutral molecule’s potential surfécés
effected via exg{(T + Vy)/h).

(b) The seconér; is the initial functiony; which is propagated
on the anion’s surfac¥; via exp{t(T + V;)/h) (producing, of

kinetic energy operatof commutes withv; s and withm¢ (n.b.,
T does commute witP/u), the following expression is obtained
for Ry:

Ry = (2alh) [ (L/2h) [ o(E)
(P eXPICVOR) 7] XPR(E + VORIm (Pl it dE

The Fourier integral over time can be carried out, and one
obtains

Ry = (27/h) [ p(E),(Pl)] 0(Vy + E — V) m
(Plu)y;(HE (33)

For anions that are electronically bound, the anion’s electronic
energyVi(Q) lies belowthe neurtral molecule’s electronic energy
Vi(Q) as depicted in Figures-24. Hence, becausk is a
positive quantity, there are no geometries for which the argument
of the ¢ function in the above expression vanishes and, as a
result, the non-BO rate cannot be cast in terms of shifted
intersecting energy surfaces as can the photon absorption rate.

Therefore, the simplest classical treatment in which the
propagator expi(T + V)h) is approximated in the product form
exp(t(T)/h) exp(t(V)/h) and the nuclear kinetic energy is
conserved during the “transition” produces a nonsensical
approximation to the non-BO rate. This should not be surprising
because (a) in the photon absorption case, the photon induces
a transition in the electronic degrees of freedom that subse-
guently cause changes in the vibratiaotation energy, while
(b) in the non-BO case, the electronic and vibratiootation
degrees of freedom musimultaneouslynterchange energy and
momentum and/or angular momentum, which is impossible to
do without the nuclei recoiling.

3. A Semiquantum Approximation That Workighe matrix
element occuring in the non-BO rate equation

M = [in ((P/u) exp(t(T + V)/R) x;| exp@(E+ T+
V) m(Plu)y;0(34)

can more fruitfully be handled by
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(a) replacing exp((T + Vi)/h)yi by the exact quantum
equivalent exgt(e)h)y; and

(b) approximating exgf(E + T + Vi)/h) by expt(E + T)/
h) exp(t(Vs)/h), thus achieving

M = [, (Plu) expit(e)/h)y;| explt(E + TY) x
exp(t(V)m (P/u)y;0(35)
Now introducing completeness relations in the forfidp |pd

(| = 1 and/dQ |QID| = 1 and using T + Vi)xi = €ix; allows
M to be written as

M= [dQ [ dQ [ dplin (P/u) explt(e)/h)y |QOx
[@'|pCexp(t(E + TclasQ/h)m”QDX
[QI exp(t(Vy(Q)M)m(P/u)yC (36)

HereT.assiS the eigenvalue of th@-coordinate’s kinetic energy
operatofT in the momentum eigenbagifol, Teiass= (P72u0q),
and[@ |pd= (27h) Y2 exp(pQ'/h) is the coordinate representa-
tion of the momentum eigenfunction along the acti@
coordinate.

The integration over time can be carried out and gives the

following expression for the total rate:

Ry = (27h) [ p(E) [ dQ [ dQ [ dp I (P/u)y; IQDx
|:(D'm@(-rclass_'_ E+ Vf (Q) - Ei)lem|m,f(P/lu)XiEuE
37)

Since the energk is restricted to match the state-to-state energy
differenceskE = ¢ — ¢, the integral over H in eq 37 can be
replaced by a sum over accessible final-state@lues multiplied

by the spacing between neighboring such stat& {d e —
Ef—]_):

Re = (2lh) 3 ple, = ) d; [ dQ [ dQ [ dpx

mﬂ,f(P/ﬂ)%i |Ql |:HID'|p'-_‘ﬁ(-rclass_i_ Vf(Q) - ff)m”QDX
QI my(P/u)x;1(38)

In this form, which is analogous to eq 26 in the photon

absorption case, the rate is expressed as a sum over the neutr%lnd Im*|2 is the square of the integrated electronic non-BO

molecule’s vibration-rotation states to which the specific initial
state having energy; can decay of (a) a translational state
densityp multiplied by (b) the expectation value of an integral
kernel A whose coordinate representation is

AQ,Q) =
J dp |Q i (Q) [@|pd(p2uq +
Vi(Q) — &) IpIQUM (Q) [Q] (39)

with the expectation value taken for the functipn= |(P/u)yC
equal to the anion’s initial vibrationrotation state acted on by
Plu (in the harmonic approximationP/uy; would yield a
combination of functions of one higher and one lower quantum
of vibration or rotation). Another way to view eq 38 is as an
integral overQ and Q' of [n¢(Plu)yi 1Q'Z Q| mys(Plu)yi0
multiplied by the (nondiagonal) representationQnspace of
the (T + Vx(Q) — ¢) operator, which is diagonal in momentum
space and equal ®(p%2uq + Vi(Q) — &) but which must be
transformed using coordinate space usijpfand [p|QL]

The integral operatoA(Q', Q) can be recast in a different
form by carrying out the integration over tlpevariable in eq

J. Phys. Chem. A, Vol. 102, No. 29, 1998041

39. Doing so and substituting the result back into the rate
expression gives

Ry = (zmh)zp(ei — &) dE, [ dQ [ dQ x
1
[, ((Plu)y; | Q' EIJ%COQ [Q —

u
Qly 2uefe; — V{(Q)/R} °

2ugler — VH(Q))

@Im ¢(Plu)y; 0

(40)

The quantity{ 2uq(er — Vi(Q))} 2 is the classical momentum
along theQ coordinate with energy; moving on theneutral
molecule’s surfac&/(Q), souq divided into this is the speed
of movement aQy on the neutral molecule’s surface.

Bearing in mind the discussion of the nature of the electronic
non-BO matrix elementsy ¢(Q) given in Section I.C, the above
rate expression can be further approximated by constra@ing
andQ to the regionQ’ = Q = Qo where the anion and neutral
surfaces approach most closely

m Q) = 6(Q — Q)N (41)
where the quantityn* is the integral representing the total
strength of them ¢ coupling concentrated at the geomeQy.
m* = /m+(Q) dQ. Introducing this approximation into eq 40
allows Ry to be written in its simplest form as

1
Ry = (ZJt/h)Zp(Ei — &) dE; { (Pl);(Qu)} * I |*——
mhu,
(42)
whereuwy is the velocity along th€ coordinate at the geometry

Qo

.= 2k ;Qvf(Qo)) )

matrix element introduced above (n.kny*|2 has units of (g
cné/sy).

The expression shown in eq 42 for the rate of ejection of
electrons from a specified initial vibratietrotation statey;(Q)
induced by non-BO coupling to all accessible neutral-molecule-
plus-free-electron final states (labeled f) gives this rate as:

1. A sum over all final vibrationrotation states: lying
below ¢; for which the geometnyQo is within the classically
allowed region of the corresponding vibratierotation wave
function y+(Q) (so thatuvy is real) of

2. the modulus squared of the functiomi( P/u)y; evaluated
at Qo

3. multiplied by the state densipfe; — ) dE; for the ejected
electron and multiplied by (@h)(1/7h), and finally

4. divided by the speed, of passage througQo.

. Summary

The rate of ejection of electrons from anions induced by non-
BO couplings can be expressed rigorously and gquantum
mechanically as a Fourier transform of an overlap function
between two functions
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Re =@y [ (/2 [ @)t (Pl exp(T + Re= (21) (e~ &) GE{(Ph)(Q) e

V)IR) 7 expt(E + T + Vy)/h) my(Plu)y;Cdt dE (31) % 42)

to one that requires knowledge of the derivative of the initial-
state vibrational wave functiof{uy;) evaluated a®y, the speed
vo at which classical motion on the neutral molecule surface
passes througldo, the density of stateg, and the magnitude
of the integrated strerength* of m; at Q.

It should be emphasized that it is not the modulyéQo)|?
that enters into the weighting functiion in eqs 41 or 42; it is the
derivative P/uyi) whose modulus squared enters. In contrast,
in the photon absorption case, the rate involves, as given in eq

one of which is the initial vibratiorrotation functiony; acted
on by the non-BO perturbatiom ¢(P/x) and then propagated
on the neutral molecule surface, the other being the injtial
propagated on the anion surface and then acted an #§/u).
In computer applications, it would be efficient to comp&e
in this manner only if long-time surface propagation tools are
applicable.

By introducing the simplest semiclassical approximation to
the propagators, in which the nucler motion kinetic energy is
assumed to commute with the anion and neutral potential energy

functions and with the non-BO coupling operators, one obtains Ry = (27/h)(1/27H) fexp[—itw] @xpth/R)y |u; * x
I I I,

R = (211h) [ p(E)I,(Pliyy| SV, + E- V) Im SpER R ok (21)
_ the modulus squared gf itself. The qualitative difference in
(PlueyyiCOE (33) the two cases has to do with the inherent requirement that the
L . . . nuclear-motion momentum and/or angular momentum change
Unlike its success in treating the photon absorption rate in non-BO transitions while the same quantities are preserved

express!on,_thls simplest approximation produces a nonsensicaj,, photon absorption events (in the semiclassical treatment).
expression in the present case because there are no geometries | | closing, it should also be mentioned that significant

atwhich ¥ + E— Vi) = 0, as a result of whicR is predicted extension of the developments given here, including the relation

to van{s_h. Itn rt]heh trl)tht(l)n gbslorptllon S|tuta_1t|on, theret ar€ 1o the LandawZener theory of surface hopping, will appear in
geometries at which the classical nuclear-motion momentumis » -0~ i Quantum Chemistiyin the near future.

conserved (i.e., where the excited and shifted ground-state
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