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Molecular anions that possess excess internal vibrational and/or rotational energy can eject their “extra” electron
through a radiationless transition event involving non-Born-Oppenheimer coupling. In such processes, there
is an interplay between the nuclear motions (i.e., vibrations and rotations) and the electronic motions that
allows energy to be transferred from the former to the latter and that permits momentum and/or angular
momentum to also be transferred in a manner that preserves total energy, momentum, and angular momentum.
There are well-established quantum mechanical expressions for the state-to-state rates of this kind of
radiationless process, and these expressions have been used successfully to compute electron ejection rates.
In this paper, we recast the quantum rate equations by making use of approximations that have proven useful
in rewriting the quantum expressions for rates of photon absorption in a more classical manner. In so doing,
our goal has been to produce rate expressions that allow one to understand, in a more nearly classical manner,
the energy-transfer process and to more readily predict when such rates will be significant.

I. Introduction

A. Relation to Experiments. Numerous series of beautiful
specroscopy experiments have been carried out over a number
of years in the Lineberger,1 Brauman,2 and Beauchamp3

laboratories in which electronically stable negative molecular
ions prepared in excited vibrational-rotational states are
observed to eject their “extra” electron. For the anions
considered in those experiments, it is unlikely that the anion
and neutral-molecule potential energy surfaces undergo crossings
at geometries accessed by their vibrational motions in these
experiments. It is therefore believed that the mechanism of
electron ejection must involve vibration-rotation to electronic
energy transfer in which couplings between nuclear motions
and electronic motions known asnon-Born-Oppenheimer(BO)
couplingscause the electron ejectionrather than curVe crossings
in which the anion’s energy surface intersects that of the neutral
at some geometries.

Certainly, there exist many cases for which the anion and
neutral electronic energy curves (surfaces, more generally)
intersect. In such cases, the rates of electron ejection are often
determined by how frequently the vibrational motion moves the
anion into geometries where its energy lies above the neutral’s
energy (because the rate on electron loss once such a geometry
is reached is often ca. 1014-1015 s-1). This class of electron
ejection isnot the subject of the present paper; only those anions
for which vibration-rotation to electronicenergy transferis
the rate-determining event are considered here.

In earlier works,4 we and others5 have formulated and
computed non-BO coupling strengths for several of the anion
systems that have been studied experimentally including the
following:

1. Dipole-bound anions5a,4f in which the extra electron is
attracted primarily by the dipole force field of the polar molecule
and for which rotation-to-electronic coupling is most important
in inducing electron ejection.

2. NH- (X2Π) for which4d vibration of the N-H bond
couples only weakly to the nonbonding 2pπ orbital and for which

rotation-to-electronic coupling can be dominiant in causing
electron ejection for high rotational levels.

3. Enolate anions4e that have been “heated” by infrared
multiple photon absorption for which torsional motion about
the H2C-C bond, which destabilizes theπ orbital containing
the extra electron, is the mode contributing most to vibration-
to-electronic energy transfer and thus to ejection.

Our calculations have been successful in interpreting trends
that are seen in the experimentally observed rates of electron
ejection. However, in our opinion, a clear physical picture of
the energy, momentum, and angular momentum balancing
events that accompany such non-BO processes (i.e., the extra
electron must gain energy and change its momentum/angular
momentum in a manner opposite to the nuclear motion’s loss
of energy and change in momentum/angular momentum) has
been lacking.

It is the purpose of this paper to enhance our understanding
of these events by recasting the rate equations in ways that are
less quantum-state specific but that focus on the movements of
the nuclei in a nearly classical manner. This is done by

1. starting with the rigorous state-to-state quantum expression
for non-BO transition rates,64g

2. including what is known from past experience4 about the
magnitudes and geometry dependencies of the electronic non-
BO matrix elements arising in these rate expressions, to

3. make the simplest reasonable approximation to the nuclear
motion7 (i.e., vibration-rotation) and its coupling to the
electronic motions.

By so doing, we are able to arrive at expressions, which we
term semiquantum, for rates of electron ejection that, in our
opinion, offer better physical insight into these radiationless
processes and thus offer the potential for predicting when such
rates will be significant in other systems. It should be
emphasized that it isnot our intent to produce rate equations
that will allow more accurate calculations of these electronically
nonadiabatic rates. For computing these rates, there is nothing
wrong with the fully quantum rate expressions that form the
starting point of our treatment. Our approximations to these
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rate expressions, instead, provide expressions that are more
readily understood and interpreted than the fully quantum
equations.

B. State-to-State Quantum Rate Expression.Within the
Born-Oppenheimer approximation, the electronic Schro¨dinger
equation

is solved to obtain electronic wave functionsψk(r|Q), which
are functions of the molecule’s electronic coordinates (col-
lectively denotedr) and atomic coordinates (denotedQ), and
the corresponding electronic energiesEk(Q), which are functions
of the Q coordinates. The electronic Hamiltonian

contains, respectively, the sum of the kinetic energies of the
electrons, the electron-electron repulsion, the electron-nuclear
Coulomb attraction, and the nuclear-nuclear repulsion energy.

Given the solutions to the electronic Schro¨dinger equation,
the solutions of the full Schro¨dinger equation (i.e., the equation
in which all nuclei and electrons are moving)

are expressed as sums over the (complete set of functions of
the electronic coordinatesr) electronic functions{ψk(r|Q)}

with the øk(Q) carrying the remainingQ dependence. When
substituted into the full Schro¨dinger

then using the fact that the full HamiltonianH is he plus the
kinetic energy operator for nuclear motionT

premultiplying the above Schro¨dinger equation byψn and
integrating over the electronic coordinates gives the set of
coupled equations that need to be solved for the{øk}:

The expression

is the equation governing the nuclear motion functions{økL-
(Q)} in the absence of the non-Born-Oppenheimer (non-BO)
coupling terms (i.e., the latter two terms in eq 7). Within this
model, the vibration-rotation functions{øk(Q)} of each specific

electronic state labeledk are found by solving the vibration-
rotation Schro¨dinger equation

There are a complete set of functions ofQ (i.e., the{øk,L} for
eachelectronic statek.

In the theory of radiationless transitions as covered in this
paper,6,4g the two non-BO terms are treated as perturbations (not
externally applied, but arising as imperfections within this model
of molecular structure) that can induce transitions between
unperturbed states each of which is taken to be a specific Born-
Oppenheimer product state:

It is reasonably well-established that the non-BO coupling term
involving second derivatives of the electronic wave function
contributes less to the coupling than do the terms (-ip∂ψk/∂Ra)-
(-ip∂øk/∂Ra)/ma having first derivatives of the electronic and
vibration-rotation functions. Hence, it is only the latter terms
that will be discussed further in this paper.

With this background, the rateR (s-1) of transition from a
Born-Oppenheimer initial stateΨi ) ψiøi to a final stateΨf

) ψføf is given, via first-order perturbation theory, as

Here,εi,f are the vibration-rotation energies of the initial (anion)
and final (neutral) states, andE denotes the kinetic energy
carried away by the ejected electron (e.g., the initial state
corresponds to an anion and the final state to a neutral molecule
plus an ejected electron). The densityF of translational energy
states of the ejected electron is related to the kinetic energy by
F(E) ) 4πmeL3(2meE)1/2/p2. Here and elsewhere, we use the
short-hand notation involvingPψPø/µ to symbolize the action
of the multidimensional derivative operators arising in the non-
BO couplings

whereRa runs over the Cartesian coordinates (Xa, Ya, Za) of the
ath atom whose mass isma.

C. The Electronic Non-BO Matrix Elements. The inte-
grals over the anion and neutral-plus-free-electron electronic
states

are known to be large in magnitude only under special
circumstances:

1. The orbital of the anion from which an electron is ejected
to form the stateψf of the neutral (usually the anion’s highest
occupied molecular orbital (HOMO)) mustbe strongly modu-
latedor affected by movement of the molecule in one or more
directions (Q). That is,∂ψi/∂Q, which appears inPψi, must be
significant or the above integral will be small.

2. The state-to-state energy gapεi - εf, which is equal to
the energyE of the ejected electron, must not be too large;
otherwise, the oscillations in the ejected electron’s wave function
ψf will be so rapid as to render overlap with∂ψi/∂Q negligible
again, making the above integral small.

Moreover, symmetry can causemi,f ) 〈ψf|P|ψi〉 to vanish.
In particular, if the direct products of the symmetry ofψi and

he(r|Q) ψk(r|Q) ) Ek(Q) ψk(r|Q) (1)

he(r|Q) ) ∑
i

{-p2/2me∇i
2 + 1/2∑

j*i

e2/ri,j - ∑
a

Zae
2/ri,a +

1/2∑
a*b

ZaZbe
2/Ra,b} (2)

H(r|Q) Ψ(r, Q) ) EΨ(r, Q) (3)

Ψ(r, Q) ) ∑
k

ψk(r|Q) øk(Q) (4)

(H - E)∑
k

ψk(r|Q) øk(Q) ) 0 (5)

H ) he + T ) he + ∑
a

(-p2/2ma∇a
2) (6)

∑
k
∫ψn*( r|Q){he + T - E}ψk(r|Q) øk(Q) dr )

{En(Q) - E} øn(Q) + Tøn(Q) +

∑
a
∑

k

{∫ψn*( r|Q)(-ip∂ψk/∂Ra)(-ip∂øk/∂Ra)/ma dr +

∫ψn*( r|Q)(-p2
∂

2ψk/∂Ra
2)/2ma drøk} ) 0 (7)

{En(Q) - E}øn(Q) + Tøn(Q) ) 0 (8a)

{T + Ek(Q)}øk,L(Q) ) εk,Løk,L(Q) (8b)

Ψk,L(r, Q) = ψk(r|Q)øk,L(Q) (9)

R ) (2π/p)∫|〈øi| 〈ψi|P|ψf〉(P/µ)øf〉|2δ(εf + E - εi) F(E) dE
(10)

(Pψf)(P/µøf) ) ∑
a

(-ip∂ψf/∂Ra)(-ip∂øf/∂Ra)/ma (11)

mi,f ) 〈ψf|P|ψi〉 (12)
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of ∂/∂Q do not match that ofψf, thenmi,f will vanish (i.e., if
direct product of the HOMO’s symmetry and the symmetry of
the vibration or rotation motion from which energy is transferred
determines the symmetry of the ejected electron’s continuum
orbital).

Let us consider these conditions in more detail before
proceeding further because they form the basis for approxima-
tions that are introduced later and that are important components
in our treatment. The derivatives (i.e., the dynamic responses)
of the anion’s orbitals to nuclear motions∂ψi/∂Q arise from
two sources:

1. The orbital’s LCAO-MO coefficients depend on the
positions of the atoms (or, equivalently, on the anion’s bond
lengths and internal angles). For example, theπ* orbital of an
olefin anion that contains the “extra” electron is affected by
stretching or twisting the C-C bond involving this orbital
because the LCAO-MO coefficients depend on the bond length
and twist angle. As the bond stretches or twists, theπ* orbital’s
LCAO-MO coefficients vary, as a result of which the orbital’s
energy, radial extent, and other properties also vary.

2. The atomic orbitals (AO) themselves dynamically respond
to the motions of the atomic centers. For example, vibration
of the X2Π NH- anion’s N-H bond induces dπ character into
the 2pπ orbital containing the extra electron as shown in Figure
1. Alternatively, rotation of this anion’s N-H bond axis causes
the 2pπ HOMO to acquire some 2pσ character (see Figure 1
again). Such AO responses can be evaluated using the same
analytical derivative methods that have made computation of
potential energy gradients and Hessians powerful tools in
quantum chemistry.

Another view of how the LCAO-MO coefficients vary with
geometry can be achieved by differentiatingheψi ) Eiψi with
respect toQ (an arbitrary molecular motion), premultiplying
by the anion-plus-free-electron functionψf, and integrating over
the electronic coordinates r to obtain

In this form, one sees that the response of the anion’s electronic
state, when projected against the neutral-plus-free-electron state
to which it will decay, will be enhanced at geometries where
the anion and neutral potential surfaces approach closely (so
the denominator in eq 13 is small). Enhancement is also
effected when the initial and final states have a strong matrix
element of the “force operator”∂he/∂Q. The latter is effectively
a one-electron operator involving derivatives of the electron-
nuclear Coulomb attraction potential∑i∑aZae2/r ii,a, so the matrix
element〈ψf|∂he/∂Q|ψi〉 can be visualized as〈φf|∂he/∂Q|φi〉, where
φi is the anion’s HOMO andφf is the continuum orbital of the
ejected electron. At geometries where the anion-neutral energy
surfaces are far removed, the denominator in eq 13 will attenuate
the coupling. If the state-to-state energy differenceεi - εf )
E accompaning the electron ejection is large, the integral〈φf|∂he/

∂Q|φi〉 will be small because the continuum orbitalφf will be
highly oscillatory and thus will not overlap well with (∂he/∂Q)φi.

In summary, for non-BO coupling to be significant,4 the
anion’s HOMO must be strongly modulatedby a motion
(vibration or rotation) of the molecule’s nuclear framework and
the state-to-state energy gap must not be too largeas to render
the HOMO-to-continuum-orbital overlap insignificant. For the
HOMO to be strongly modulated, it is helpful ifthe anion and
neutral energy surfaces approach closely(n.b., this is not the
same as requiring that the state-to-state energy gapεi - εf be
small) at some accessible geometries.

It should be emphasized that it is necessary but not suffficient
for Ef(Q) - Ei(Q) to be small over an appreciable range of
geometries; this only guarantees that the denominator in eq 13
is small. It is also necessary thatEf(Q) - Ei(Q) decrease at a
significant rate as the point of closest approach is reached; this
is why we say the surfaces mustapproach closely. Viewed
another way, ifEf(Q) - Ei(Q) were small yet unvarying over
some range of geometries (Q), then the HOMO’s electron
binding energy (and thus radial extent) would remain unchanged
over this range of geometries. In such a case, movement along
Q would not modulatethe HOMO, and thus∂ψi/∂Q would
vanish. Let us consider a few examples to further illustrate.

D. A Few Examples. In Figure 2 are depicted anion and
neutral potential curves that are qualitatively illustrative of1b,4d

the X2Π NH- case mentioned earlier. In this anion, the HOMO
is a nonbonding 2pπ orbital localized almost entirely on the N
atom. As such, its LCAO-MO coefficients are not strongly
affected by vibration of the N-H bond (because it is a
nonbonding orbital). Moreover, the anion and neutral surfaces
have nearly identicalRe andωe values, and similarDe values,
as a result of which these two surfaces are nearly parallel to
one another over a wide range of internuclear distances and are
separated by ca. 0.4 eV or more than 3000 cm-1 at their minima.
It has been seen experimentally that excitation of NH- to the
low rotational states of theV ) 1 vibrational level (which lies
aboveV ) 0 NH of the neutral and thus has enough energy to
eject the electron) results in very slow (e.g., ca. 108 s-1) electron
ejection, corresponding to ca. 1 million vibrational periods
before detachment occurs. However, excitation to high rota-
tional levels (e.g.,J ) 40) of V ) 1 produces much more rapid
electron ejection (ca. 109-1010 s-1). These data have been
interpreted as saying that vibrational coupling is weak (i.e.,∂ψi/
∂R is small) because of the nonbonding nature of the 2pπMO,
while rotational coupling becomes significant (i.e.,∂ψi/∂θ is
large) for highJ.

In Figure 3 are shown anion and neutral potential curves, as
functions of the “twist” angle of the H2C-C bond in a typical

Figure 1. Orbital response of NH-’s 2pπ orbital to (a) vibration of
the N-H bond (left) and (b) rotation of the N-H bond (right).

〈ψf|∂he/∂Q|ψi〉/(Ei - Ef - E) ) 〈ψf|∂/∂Qψi〉> (13)

Figure 2. Anion (lower) and neutral (upper) potential energy surfaces
illustrative of NH- where the surface spacing does not vary strongly
alongR.
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enolate anion2,4e such as acetaldehyde enolate H2CCHO-.
Angles nearθ ) 0 correspond to geometries where the pπ orbital
of the H2C moiety is delocalized over the two pπ orbitals of the
neighboring C and O atoms, thus forming a delocalizedπ
HOMO. At angles nearθ ) 90°, the pπ orbital of the H2C
group is no longer stabilizated by delocalization, so the HOMO’s
energy is much higher (as a result of which the anion-neutral
surfacesapproach closely). In this case, excitation of, for
example,V ) 7 in the H2C-C torsional mode of the anion might
be expected to produce electron ejection becauseV ) 7 of the
anion lies aboveV ) 0 of the neutral. However, over the range
of θ values accessible to both theV ) 7 vibrational function of
the anion and theV ) 0 function of the neutral, the anion-
neutral energy-surface gap is quite large (i.e.,Ef(Q) - Ei(Q) is
large even thoughεi - εf is small). In contrast, excitation ofV
) 9 of the anion could produce more rapid electron ejection
(to V ) 2 of the neutral, but not toV ) 0 of the neutral) because
for the V ) 9 f V ) 2 transition there are angles accessed by
both V ) 9 anion andV ) 2 neutral vibrational functions for
whichEf(Q) - Ei(Q) is small and changing; moreover, the state-
to-state gapεi - εf is also small in this case.

The purpose of these examples and of considering the nature
of the electronic non-BO matrix element was to prepare for
critical approximations that are to be introduced. In particular

1. we will focus on transitions for whichεi - εf is small;
2. we will focus on molecular deformations that most

stronglymodulatethe anion’sHOMO, so
3. we will focus on geometriesQ near whichthe anion-

neutral surface spacing is small and changing.

II. Time Correlation Function Expression for Rates

Before dealing further with the non-Born-Oppenheimer case,
it is useful to recall how one can cast other rate expressions,
such as the rate of photon absorption7 accompanying an
electronic transition in a molecule, in terms of a Fourier
transform of a time-dependent function that involves dynamical
motions on the initial and final electronic states’ potential energy
surfaces.

A. The Optical Spectroscopy Case.1. From Wentzel-
Fermi Golden Rule to the Time Domain.The expression for
the rateR (s-1) of photon absorption due to couplingV between
a molecule’s electronic and nuclear charges and an electromag-
netic field is given through first order in perturbation theory by
the well-known Wentzel-Fermi “golden rule: formula:7,8

Here,ψi,f and øi,f are the initial and final state electronic and
vibration-rotation state wave functions, respectively, andεi,f

are the respective state energies, which are connected via a
photon of energypω. For a particular electronic transition (i.e.,
a specific choice forψi andψf and for a specific choice ofinitial
vibration-rotation state), it is possible to obtain an expression
for the total rate RT of transitions from this particular initial
state into all vibration-rotation states of the final electronic
state. This is done by using the Fourier representation of the
Dirac δ function

and summing over the indices labelling the final vibration-
rotation statesøf

Next, one introduces the electronic transition matrix element
(which may be the electric dipole matrix element, but need not
be so restricted for the delelopment presented here)

and uses the facts that theψi,f are eigenfuncions of the electronic
Hamiltonian he and that theøi,f are eigenfuntions of the
respective vibration-rotation HamiltoniaT + Vi,f(Q) belonging
to the two electronic states having potential energiesVi,f(Q) and
vibration-rotation kinetic energyT (both of which are functions
of the molecule’s atomic position coordinates collectively
denotedQ)

These identities then allowRT to be rewritten as

In this form, the completeness of the{øf}

can be used to eliminate the sum over the vibration-rotation
states belonging to the final electronic state and thus express
RT in the following manner:

The above expression is often visualized (and computed)9 in
terms of the Fourier transform of the oVerlap of two time-
propagated waVe fuctions:

(a) One functionF1 is equal to the initial vibration-rotation
function |øi〉 upon which the electronic transition perturbation
µi,f acts, after which the resultant product function is propagated
for a timet on thefinal-state’s potential energy surface by using
the propagator exp(ithf/p).

Figure 3. Anion (lower) and neutral (upper) potential energy surfaces
illustrative of enolate cases where the surface spacing varies strongly
along the H2C-C torsion angleθ and becomes very small nearθ )
90°.

R ) (2π/p)|〈ψiøi|V|ψføf〉|2δ(εf - εi - pω) (14)

δ(εf - εi - pω) ) (1/2πp)∫exp[it(εf - εi - pω)/p] dt

(15)

RT ) (2π/p)∑
f

(1/2πp)∫exp[it(εf - εi - pω)/p] ×

〈ψiøi|V|ψføf〉〈ψiøi|V|ψføf〉* dt (16)

µi,f ) 〈ψf|V|ψi〉 (17)

heψi,f ) Vi,f(Q)ψi,f and [T + Vi,f(Q)]øi,f ) εi,føi,f (18)

RT )

(2π/p)∑
f

(1/2πp)∫exp[-itω]〈øi| exp(-ithi/p)µi,f* |øf〉 ×

〈øf exp(ithf/p)|µi,f|øi〉 dt (19)

∑
f

|øf〉〈øf| ) 1 (20)

RT ) (2π/p)(1/2πp)∫exp[-itω]〈exp(ithi/p)øi|µi,f* ×
exp(ithf/p) µi,f|øi〉 dt (21)
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(b) The second functionF2 is equal to the initial vibration-
rotation function|øi〉, which is propagated for timet on the
initial -state’s potential energy surface using the propagator exp-
(ithi/p) (which, of course simpy produces exp(itεi/p) × |øi〉),
after which the electronic transition perturbationµi,f is allowed
to act.

The overlap〈F2|F1〉 is then Fourier transformed at the energy
pω of the photon to obtain the rateRT of absorption of photons
of frequencyω.

Before returning to the non-BO rate expression, it is important
to note that, in this electronic-transition spectroscopy case, the
perturbation (i.e., the photon’s electromagnetic potential) appears
explicitly only in the electronicµi,f matrix element because this
external field is purely an electronic operator. In contrast, in
the non-BO case, the perturbation involves aproduct of
momentum operators, one acting on the electronic wave function
(Pψi) the second (Pψi/µ) acting on the vibration/rotation wave
function because the non-BO perturbation involves an explicit
exchange of energy and momentum between the electrons and
the nuclei rather than an absorption of energy and momentum
from a photon. As a result, one has matrix elements of the
form 〈øi|〈ψi|P|ψf〉(P/µ)øf〉 in the non-BO case whereas one finds
〈øi|〈ψi|V|ψf〉|øf〉 in the spectroscopy case. A primary difference
is that derivatives of the vibration/rotation functions appear in
the former case (in (P/µ)ø) while only ø appears in the latter.

2. The Semiclassical Approximation to RT. The most
classical (and hence, least quantum) approximation7 is to ignore
the fact that the nuclear-motion kinetic energy operatorT does
not commute with the potentialsVi,f and thus to write

Inserting this into the above equation forRT, and also assuming
that T also commutes withµi,f (or that µi,f does not depend
significantly on geometryQ), gives

This treatment amounts to treating the nuclear motions fully
classically while using quantum mechanics for the electronic
motions. Carrying out the Fourier integral over time in eq 23
gives

Thisδ function can be used in the expression forRT to constrain
the multidimensional integral over vibration-rotation coordi-
nates (denotedQ) to those specific values that obey the energy
conservation condition

thereby yielding

This semiclassical (quantum electrons and classical nuclear
motions) result can be interpreted as saying thatRT is given as
the norm of the functionµi,føi (consisting of the perturbation
µi,f acting on the initial vibration-rotation state)constrained
to those regions of space that obey the conditionpω ) Vf(Q)
- Vi(Q). This condition is equivalent to constraining the
integration to those regions where the change in classical

nuclear-motion kinetic energy in moving from the initial-state
surfaceVi to the final-state surfaceVf is zero. One can visualize
such geometies as those at which the upper potential energy
surfaceVf(Q) is intersected by the lower surfaceVi(Q) once
the lower surface is shifted to higher energy by an amountpω.
In Figure 4 is shown such an intersection between aVf(Q)
surface and a lower-stateVi(Q) surface that has been shifted
upward in energy. In this example, transitions between the
initial level εi and the final levelεf, whose differenceεf - εi )
pω determines the energy shift, would occur atR values near
where the two surfaces cross.

B. The Non-Born-Oppenheimer Case. 1. From Went-
zel-Fermi Golden Rule to the Time Domain.Let us now
consider how similar the expression for rates of radiationless
transitions induced by non-Born-Oppenheimer couplings can
be made to the expressions given above for photon absorption
rates. We begin with the corresponding6,4g Wentzel-Fermi
“golden rule” expression given in eq 10 for the transition rate
between electronic statesψi,f and corresponding vibration-
rotation statesøi,f appropriate to the non-BO case:

We recall thatεi,f are the vibration-rotation energies of the
molecule in the anion and neutral molecule states,E denotes
the kinetic energy carried away by the ejected electron, and the
density of translational energy states of the ejected electron is
F(E). Also recall that we use the shorthand notation to
symbolize the multidimensional derivative operators that arise
in non-BO couplings and that embody the momentum exchange
between the vibration/rotation and electronic degrees of freedom

whereRa is one of the Cartesian coordinates (Xa, Ya, Za) of the
ath atom whose mass isma.

In the event that some subset{Qi} of internal vibration or
rotation coordinates has been identified as inducing the radia-
tionless transition, (Pψf)(P/µøf) would represent∑j(-ip∂ψf/∂Qj)-
(-ip∂øf/∂Qj)/(µj), whereµæ is the reduced mass associated with
the coordinateQj. As indicated in the discussion of Section
I.C, it is usually straightforward to identify which distortional
modes need to be considered by noting which modes most
stronglymodulate the anion’s HOMO. So, for the remainder

Figure 4. Anion (lowest) and neutral (second lowest at largeR)
potential energy surfaces arising in the photon absorption case. The
curve that is highest in energy at largeR is the anion surface that has
been shifted upward in energy by the photon’s energypω (which has
been chosen to makeεf equal toεi plus the photon’s energy).

R ) (2π/p)∫|〈øi|〈ψi|P|ψf〉(P/µ)øf〉|2δ(εf + E - εi)F(E) dE
(10)

(Pψf)(P/µøf) ) ∑
a

(-ip∂ψf/∂Ra)(-ip∂øf/∂Ra)/ma (11)

exp(ithi,f/p) = exp(itT/p) exp(itVi,f/p) (22)

RT ) (2π/p)(1/2πp)∫exp[-itω]〈øi exp(itVi/p)|µi,f* ×
exp(itVf/p)|µi,f|øi〉 dt (23)

(1/2πp)∫exp[it(Vf - Vi - pω)/p] dt ) δ(Vf - Vi - pω)

(24)

pω ) Vf(Q) - Vi(Q) (25)

RT ) (2π/p)〈øi|µi,f*δ(Vf - Vi - pω) µi,f|øi〉 (26)

Expressions for Electron Ejection Rates J. Phys. Chem. A, Vol. 102, No. 29, 19986039



of this work, we will assume that such active modes have been
identified as a result of which the sum∑j(-ip∂ψf/∂Qj)(-ip∂øf/
∂Qj)/(µj) will include only these modes. The integration over
all of the other coordinates contained in the matrix element〈øi|-
〈ψi|P|ψf〉(P/µ)øf〉 in eq 10 can then be carried out (assuming
the electronic element〈ψi|P|ψf〉 to not depend significantly on
these coordinates) to produce an effective Franck-Condon-like
factor (FC):

Since, by assumption, the anion and neutral molecule do not
differ significantly in their geometries (and vibrational frequen-
cies) along the coordinates contributing to the FC factor
(otherwise, the anion-neutral energy gap would depend sub-
stantially on these modes), the FC factor is probably close to
unity in magnitude. Hence, for the remainder of this paper,
we will focus only on the active-mode part of this expression
and will do so assuming only one such mode is operative (i.e.,
we treat one active mode at a time).

Introducing the electronic coupling matrix element

which plays a role analogous to theµi,f of photon absorption
theory, and realizing thatP is a Hermitian operator, allows the
non-BO rateR to be rewritten as

If the Fourier integral representation of theδ function is
introduced and the sum over all possible final-state vibration-
rotation states{øf} is carried out, thetotal rateRT appropriate
to this non-BO case can be expressed as

The next step is to replace (εf + E)〈øf| by 〈øf|(T + Vf + E) and
(εi)|øi〉 by |(T + Vi)øi〉 and to use∑f|øf〉〈øf| ) 1, which gives

In this form, the rate expression looks much like that given for
the photon absorption rate in eq 21 but withmi,f(P/µ) replacing
the molecule-photon transition matrix elementµi,f. As in the
absorption case, one can view (and even compute)RT as the
Fourier transform of the oVerlap of two time-propagated
functions:

(a) The first F1 is the initial vibration-rotation stateøi upon
which the non-BO perturbationmi,f(P/µ) acts after which
propagation on the neutral molecule’s potential surfaceVf is
effected via exp(it(T + Vf)/p).

(b) The secondF2 is the initial functionøi which is propagated
on the anion’s surfaceVi via exp(it(T + Vi)/p) (producing, of

course, exp(itεi/p) øi) after which the perturbationmi,f(P/µ) is
allowed to act.

The time-dependent overlap〈F2|F1〉 is then Fourier trans-
formed at energyE ) εi - εf and multiplied by the density of
statesF(E) appropriate to the electron ejected with kinetic energy
E.

It should be noted that to use the above time-domain formulas
for computingrates, one would need an efficient means of
propagating wave packets on the neutral and anion surfaces that
would be valid for longer times than are needed in the optical
spectroscopy case. Why? Because, in the non-BO situation,
the 〈F2|F1〉 product is multiplied by exp(iEt/p) and then
integrated over time. In the spectroscopy case,〈F2|F1〉 is
multiplied by exp(-iωt) and integrated over time. In the former
case,E corresponds to a small energy differenceE ) εi - εf,
whereaspω is equal to the energy of the optical spectroscopic
transition. Hence, short-time propagators give sufficiently
accurate〈F2|F1〉 functions to use in the spectroscopy case, but
longer time propagations will be needed in the non-BO case.

2. The Simplest Semiclassical Approximation Fails in the
Non-BO Case.If one attempts to follow the photon absorption
derivation and make the assumption that the nuclear-motion
kinetic energy operatorT commutes withVi,f and withmi,f (n.b.,
T does commute withP/µ), the following expression is obtained
for RT:

The Fourier integral over time can be carried out, and one
obtains

For anions that are electronically bound, the anion’s electronic
energyVi(Q) liesbelowthe neurtral molecule’s electronic energy
Vf(Q) as depicted in Figures 2-4. Hence, becauseE is a
positive quantity, there are no geometries for which the argument
of the δ function in the above expression vanishes and, as a
result, the non-BO rate cannot be cast in terms of shifted
intersecting energy surfaces as can the photon absorption rate.

Therefore, the simplest classical treatment in which the
propagator exp(it(T + V)p) is approximated in the product form
exp(it(T)/p) exp(it(V)/p) and the nuclear kinetic energyT is
conserved during the “transition” produces a nonsensical
approximation to the non-BO rate. This should not be surprising
because (a) in the photon absorption case, the photon induces
a transition in the electronic degrees of freedom that subse-
quently cause changes in the vibration-rotation energy, while
(b) in the non-BO case, the electronic and vibration-rotation
degrees of freedom mustsimultaneouslyinterchange energy and
momentum and/or angular momentum, which is impossible to
do without the nuclei recoiling.

3. A Semiquantum Approximation That Works.The matrix
element occuring in the non-BO rate equation

can more fruitfully be handled by

〈øi|〈ψi|P|ψf〉(P/µ)øf〉

) Πj)inactive∫dQj 〈øi,j|øf,j〉Πj)active∫dQj〈øi,j|〈ψi|P|ψf〉 ×
(P/µ)øf,j〉

) FC Πj)active∫dQj 〈øi,j|〈ψi|P|ψf〉(P/µ)øf,j〉 (27)

mi,f ) 〈ψf|P|ψi〉 (28)

R ) (2π/p)∫〈(P/µ)øi|mi,f* |øf〉〈øf|mi,f(P/µ)øi〉δ(εf + E -

εi) F(E) dE (29)

RT ) (2π/p)∑
f
∫(1/2πp)∫exp[it(εf - εi + E)/p] ×

〈(P/µ)øi|mi,f* |øf〉〈øf|mi,f(P/µ)øi〉 dt F(E) dE (30)

RT ) (2π/p)∫(1/2πp)∫F(E)〈mi,f(P/µ) exp(it(T +

Vi)p) øi| exp(it(E + T + Vf)/p)mi,f(P/µ)øi〉 dt dE (31)

RT ) (2π/p)∫(1/2πp)∫F(E)

〈mi,f(P/µ) exp(it(Vi)p) øi| exp(it(E + Vf)p)mi,f(P/µ)øi〉 dt dE
(32)

RT ) (2π/p)∫F(E)〈mi,f(P/µ)øi| δ(Vf + E - Vi) mi,f

(P/µ)øi〉 dE (33)

M ) 〈mi,f(P/µ) exp(it(T + Vi)/p) øi| exp(it(E + T +
Vf)/p) mi,f(P/µ)øi〉 (34)
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(a) replacing exp(it(T + Vi)/p)øi by the exact quantum
equivalent exp(it(εi)p)øi and

(b) approximating exp(it(E + T + Vf)/p) by exp(it(E + T)/
p) exp(it(Vf)/p), thus achieving

Now introducing completeness relations in the forms∫dp |p〉-
〈p| ) 1 and∫dQ |Q〉〈Q| ) 1 and using (T + Vi)øi ) εiøi allows
M to be written as

HereTclassis the eigenvalue of theQ-coordinate’s kinetic energy
operatorT in the momentum eigenbasis{|p〉}, Tclass) (p2/2µQ),
and〈Q′|p〉 ) (2πp)-1/2 exp(ipQ′/p) is the coordinate representa-
tion of the momentum eigenfunction along the activeQ
coordinate.

The integration over time can be carried out and gives the
following expression for the total rate:

Since the energyE is restricted to match the state-to-state energy
differencesE ) εi - εf, the integral over dE in eq 37 can be
replaced by a sum over accessible final-stateεf values multiplied
by the spacing between neighboring such states (dEf ) εf -
εf-1):

In this form, which is analogous to eq 26 in the photon
absorption case, the rate is expressed as a sum over the neutral
molecule’s vibration-rotation states to which the specific initial
state having energyεi can decay of (a) a translational state
densityF multiplied by (b) the expectation value of an integral
kernel∆ whose coordinate representation is

with the expectation value taken for the functionψ ) |(P/µ)øi〉
equal to the anion’s initial vibration-rotation state acted on by
P/µ (in the harmonic approximation,P/µøi would yield a
combination of functions of one higher and one lower quantum
of vibration or rotation). Another way to view eq 38 is as an
integral overQ and Q′ of 〈mi,f(P/µ)øi |Q′〉* 〈Q| mi,f(P/µ)øi〉
multiplied by the (nondiagonal) representation inQ space of
theδ(T + Vf(Q) - εf) operator, which is diagonal in momentum
space and equal toδ(p2/2µQ + Vf(Q) - εf) but which must be
transformed using coordinate space using〈Q′|p〉 and 〈p|Q〉.

The integral operator∆(Q′, Q) can be recast in a different
form by carrying out the integration over thep variable in eq

39. Doing so and substituting the result back into the rate
expression gives

The quantity{2µQ(εf - Vf(Q))}1/2 is the classical momentum
along theQ coordinate with energyεf moving on theneutral
molecule’s surfaceVf(Q), so µQ divided into this is the speed
of movement atQ0 on the neutral molecule’s surface.

Bearing in mind the discussion of the nature of the electronic
non-BO matrix elementsmi,f(Q) given in Section I.C, the above
rate expression can be further approximated by constrainingQ′
andQ to the regionQ′ ) Q ) Q0 where the anion and neutral
surfaces approach most closely

where the quantitym* is the integral representing the total
strength of themi,f coupling concentrated at the geometryQ0:
m* ) ∫mi,f(Q) dQ. Introducing this approximation into eq 40
allows RT to be written in its simplest form as

whereV0 is the velocity along theQ coordinate at the geometry
Q0

and |mi* |2 is the square of the integrated electronic non-BO
matrix element introduced above (n.b.,|m* |2 has units of (g
cm2/s)2).

The expression shown in eq 42 for the rate of ejection of
electrons from a specified initial vibration-rotation stateøi(Q)
induced by non-BO coupling to all accessible neutral-molecule-
plus-free-electron final states (labeled f) gives this rate as:

1. A sum over all final vibration-rotation statesεf lying
below εi for which the geometryQ0 is within the classically
allowed region of the corresponding vibration-rotation wave
function øf(Q) (so thatV0 is real) of

2. the modulus squared of the functionm*(P/µ)øi evaluated
at Q0

3. multiplied by the state densityF(εi - εf) dEf for the ejected
electron and multiplied by (2π/p)(1/πp), and finally

4. divided by the speedV0 of passage throughQ0.

III. Summary

The rate of ejection of electrons from anions induced by non-
BO couplings can be expressed rigorously and quantum
mechanically as a Fourier transform of an overlap function
between two functions

M ) 〈mi,f(P/µ) exp(it(εi)/p)øi| exp(it(E + T)/p) ×
exp(it(Vf)mi,f(P/µ)øi〉 (35)

M ) ∫dQ′ ∫ dQ∫ dp〈mi,f(P/µ) exp(it(εi)/p)øi |Q′〉 ×
〈Q′|p〉 exp(it(E + Tclass)/p)〈p|Q〉 ×

〈Q| exp(it(Vf(Q)/p)mi,f(P/µ)øi〉 (36)

RT ) (2π/p)∫ F(E) ∫ dQ′ ∫ dQ∫ dp 〈mi,f(P/µ)øi |Q′〉 ×
〈Q′|p〉δ(Tclass+ E + Vf (Q) - εi)〈p|Q〉〈Q|mi,f(P/µ)øi〉 dE

(37)

RT ) (2π/p)∑
f

F(εi - εf) dEf ∫ dQ′ ∫ dQ∫ dp ×

〈mi,f(P/µ)øi |Q′〉〈Q′|p〉δ(Tclass+ Vf(Q) - εf)〈p|Q〉 ×
〈Q| mi,f(P/µ)øi〉 (38)

∆(Q′, Q) )

∫ dp |Q′〉mi,f(Q′) 〈Q′|p〉δ(p2/2µQ +

Vf(Q) - εf) 〈p|Q〉 mi,f (Q) 〈Q| (39)

RT ) (2π/p)∑
f

F(εi - εf) dEf ∫ dQ′ ∫ dQ ×

〈mi,f(P/µ)øi|Q′〉
1

πp
cos{[Q′ -

Q]x2µQ(εf - Vf(Q))/p}
µQ

x2µQ(εf - Vf(Q))

〈Q|mi,f(P/µ)øi〉

(40)

mi,f(Q) ) δ(Q - Q0)m* (41)

RT ) (2π/p)∑
f

F(εi - εf) dEf {(P/µ)øi(Q0)}
2 〉|m* |2 1

πpV0

(42)

V0 )
2µQ(εf - Vf(Q0))

µQ
(43)
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one of which is the initial vibration-rotation functionøi acted
on by the non-BO perturbationmi,f(P/µ) and then propagated
on the neutral molecule surface, the other being the initialøi

propagated on the anion surface and then acted on bymi,f(P/µ).
In computer applications, it would be efficient to computeRT

in this manner only if long-time surface propagation tools are
applicable.

By introducing the simplest semiclassical approximation to
the propagators, in which the nucler motion kinetic energy is
assumed to commute with the anion and neutral potential energy
functions and with the non-BO coupling operators, one obtains

Unlike its success in treating the photon absorption rate
expression, this simplest approximation produces a nonsensical
expression in the present case because there are no geometries
at which (Vf + E - Vi) ) 0, as a result of whichRT is predicted
to vanish. In the photon absorption situation, there are
geometries at which the classical nuclear-motion momentum is
conserved (i.e., where the excited and shifted ground-state
surfaces intersect). In the non-BO transition case, such geom-
etries do not exist because the transition is not one in which
the nuclear-motion momentum is conserved. Quite to the
contrary, non-BO transitions involve the simultaneous inter-
change of energy (from the nuclei to the electrons) and of
momentum and/or angular momentum.

Improving on the treatment of the vibration-rotation motion
only slightly allowsRT to be recast in the so-called semiquantum
form

that may prove computationally useful in cases where the
geometry (Q) dependence of the non-BO electronic matrix
elementmi,f is known. In this expression, the rate is given in
terms of the functionsmi,f(P/µ)øi, the density of state function
F, the classical momentum on the neutral molecule’s surface,
and a cos function whose argument is the classical action
connecting the pointsQ′ andQ via the momentum on the neutral
molecule’s surface with an energyεf. This cos function will
oscillate rapidly when this action is large, so its dominant
contributions to the rate arise for small momenta and/or small
Q′ - Q values.

Finally, by using what is known about the geometry
dependence of themi,f functions (i.e., thatmi,f is strongly
“peaked” near geometriesQ0 where the anion and neutral
surfaces approach most closely), it is possible to further simplify
the semiquantum equation forRT

to one that requires knowledge of the derivative of the initial-
state vibrational wave function (P/µøi) evaluated atQ0, the speed
V0 at which classical motion on the neutral molecule surface
passes throughQ0, the density of statesF, and the magnitude
of the integrated strerengthm* of mi,f at Q0.

It should be emphasized that it is not the modulus|øi(Q0)|2
that enters into the weighting functiion in eqs 41 or 42; it is the
derivative (P/µøi) whose modulus squared enters. In contrast,
in the photon absorption case, the rate involves, as given in eq
21

the modulus squared oføi itself. The qualitative difference in
the two cases has to do with the inherent requirement that the
nuclear-motion momentum and/or angular momentum change
in non-BO transitions while the same quantities are preserved
in photon absorption events (in the semiclassical treatment).

In closing, it should also be mentioned that significant
extension of the developments given here, including the relation
to the Landau-Zener theory of surface hopping, will appear in
AdVances in Quantum Chemistry11 in the near future.
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RT ) (2π/p) ∫ (1/2πp) ∫F(E)〈mi,f(P/µ) exp(it(T +

Vi)/p) øi| exp(it(E + T + Vf)/p) mi,f(P/µ)øi〉 dt dE (31)

RT ) (2π/p) ∫ F(E)〈mi,f(P/µ)øi| δ(Vf + E - Vi) |mi,f

(P/µ)øi〉 dE (33)

RT )

(2π/p)∑
f

F(εi - εf) dEf ∫ dQ′ ∫ dQ 〈mi,f(P/µ)øi|Q′〉
1

πp
×

cos{[Q′ - Q]x2µQ(εf - Vf(Q))/p}
µQ

x2µQ(εf - Vf(Q))

〈Q|mi,f(P/µ)øi〉 (40)

RT ) (2π/p)∑
f

F(εi - εf) dEf{(P/µ)øi(Q0)}
2〉|m* |2 1

πpV0
(42)

RT ) (2π/p)(1/2πp) ∫exp[-itω]〈exp(ithi/p)øi|µi,f* ×
exp(ithf/p)µi,f|øi〉 dt (21)
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